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Abstract.13

Background: Alzheimer’s disease (AD) disproportionately affects females with steeper cognitive decline and more neu-
ropathology compared to males, which is exacerbated in females carrying the APOE �4 allele. The risk of developing AD
is also higher in female APOE �4 carriers in earlier age groups (aged 65–75), and the progression from cognitively normal
to mild cognitive impairment (MCI) and to AD may be influenced by sex. Inflammation is observed in AD and is related to
aging, stress, and neuroplasticity, and although studies are scarce, sex differences are noted in inflammation.
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Objective: The objective of this study was to investigate underlying physiological inflammatory mechanisms that may help
explain why there are sex differences in AD and APOE �4 carriers.

19
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Methods: We investigated, using the ADNI database, the effect of sex and APOE genotype (non-carriers or carriers of 1
and 2 APOE �4 alleles) and sex and diagnosis (cognitively normal (CN), MCI, AD) on CSF (N = 279) and plasma (N = 527)
markers of stress and inflammation.

21
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Results: We found CSF IL-16 and IL-8 levels were significantly lower in female non-carriers of APOE �4 alleles compared
to males, whereas levels were similar between the sexes among carriers of APOE �4 alleles. Furthermore, females had on
average higher levels of plasma CRP and ICAM1 but lower levels of CSF ICAM1, IL-8, IL-16, and IgA than males. Carrying
APOE �4 alleles and diagnosis (MCI and AD) decreased plasma CRP in both sexes.
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Conclusion: Sex differences in inflammatory biomarkers support that the underlying physiological changes during aging
differ by sex and tissue origin.
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INTRODUCTION31

Alzheimer’s disease (AD) is a neurodegenerative32

disease characterized by severe cognitive decline [1].33

Risk factors for AD include modifiable risk factors34

such as sociocultural or lifestyle factors (e.g., educa-35

tion, marital status, exercise), chronic stress exposure36

[2], and medical conditions (diabetes, obesity, and37

cardiovascular disease) [3–5]. Non-modifiable life-38

time risk factors for AD include age, female sex, and39

APOE genotype [6]. However, research on the effects40

of biological sex on risk for AD is equivocal and may41

depend on geographic location (reviewed in [4, 7,42

8]). Nevertheless, females with AD show greater cog-43

nitive decline [9–11] and neuropathology compared44

to males (faster brain atrophy rates, neurofibrillary45

tangles; [10, 12–15]). Intriguingly, the presence of46

APOE �4 alleles increases the risk to develop AD in47

females compared to males at an earlier age (aged48

65–75; [16]), and accelerates neuropathology and49

cognitive decline more so in females than in males50

[10, 11, 14, 17–19], indicating that the APOE geno-51

type interacts with sex on various factors related to52

AD. However, there is limited research into the role53

of sex and its interaction with APOE genotype in the54

possible mechanisms underlying AD. Understanding55

why females in general and female APOE �4 carriers56

have a higher burden of the disease is important for57

the development of tailored treatments. Biomarkers58

are highly sought after to predict disease onset and59

progression and to understand the underlying mech-60

anisms of diseases in order to develop or improve61

treatments.62

Chronic low-grade inflammation is a hallmark of63

AD, as evidenced by increased expression of proin-64

flammatory cytokines in the brains of AD patients65

(not analyzed by sex), which can exacerbate AD66

pathology [20–22]. There is, however, increasing67

evidence that there are sex differences in immune68

responses in healthy adults with females mount-69

ing a stronger response compared to males after an70

acute challenge [23, 24]. In response to an endo-71

toxin, females have higher levels of pro-inflammatory72

plasma cytokines (TNF-� and IL-6), while males73

have higher plasma levels of anti-inflammatory IL-1074

[23, 25]. In addition, aging affects the immune system75

differently in males and females, with females having76

higher genomic activity for adaptive cells and males77

having activity for monocytes and inflammation [26].78

Although limited, there is evidence that sex differ-79

ences in systemic inflammation are associated with80

greater AD pathology [27] but not cognitive decline81

in normal aging [28]. Specifically, higher C-reactive 82

protein (CRP) levels in blood beginning in midlife 83

are associated with higher brain amyloid levels later 84

in life in healthy males, but not in healthy females 85

[27]. To our knowledge, very few studies have strati- 86

fied by sex and APOE genotype or sex and diagnosis 87

of cognitive status on potential biomarkers of AD, 88

including inflammation. 89

Sex differences in inflammatory biomarker sys- 90

tems may also differentially affect neuroplasticity 91

[29, 30], which is reduced in AD and correlates 92

with cognitive decline [31, 32]. In addition, periph- 93

eral cortisol, the main stress hormone in humans, is 94

elevated in AD [33] and is associated with higher 95

amyloid levels in the brain [34], a reduction in hip- 96

pocampal volume, and cognitive impairment in older 97

individuals [35] that may depend on mild cogni- 98

tive impairment (MCI) status [36]. Peripheral cortisol 99

is also associated with elevated pro-inflammatory 100

cytokines [23, 37]. However, it is not known 101

how sex differences in markers of inflammation 102

(e.g., cytokines, immunoglobulins, CRP, intercellu- 103

lar adhesion molecule, ICAM1), and stress hormones 104

(cortisol) may be related to sex differences in AD. 105

Using the ADNI database, we conducted ex- 106

ploratory analyses examining sex differences in 107

cerebrospinal fluid (CSF) and plasma physiologi- 108

cal biomarkers, inflammation and stress related, and 109

how these may be affected by APOE genotype (non- 110

carriers or carriers of APOE �4 alleles), and dementia 111

status (cognitively healthy (CN), MCI, AD). We 112

tested the hypothesis that females have higher lev- 113

els of inflammation and stress hormones compared to 114

males and these levels are disproportionately affected 115

by the presence of APOE �4 alleles and AD diagnosis. 116

METHODS 117

ADNI database 118

Data used in the preparation of this article 119

were obtained from the Alzheimer’s Disease Neu- 120

roimaging Initiative (ADNI) database (https://adni. 121

loni.usc.edu). The ADNI was launched in 2003 as 122

a public-private partnership, led by Principal Inves- 123

tigator Michael W. Weiner, MD. The primary goal 124

of ADNI has been to test whether serial mag- 125

netic resonance imaging (MRI), positron emission 126

tomography (PET), other biological markers, and 127

clinical and neuropsychological assessment can be 128

combined to measure the progression of MCI and 129

https://adni.loni.usc.edu
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early AD. For up-to-date information, see https://130

www.adni-info.org. Data used in this article were131

downloaded on or before January 16, 2019. Inclusion132

and exclusion criteria of participants [38, 39] were133

the same for the two datasets analyzed in the current134

study (biomarkers in CSF and plasma), and gen-135

eral procedures are detailed online (https://adni.loni.136

usc.edu/methods/documents/). Briefly, CN partic-137

ipants had normal memory function based on138

education-adjusted scores on the Wechsler Memory139

Scale Logical Memory II and a Clinical Dementia140

Rating (CDR) of 0. Amnestic late MCI (LMCI) par-141

ticipants had objective memory loss (measured by142

education-adjusted scores from Wechsler Memory143

Scale Logical Memory II), a CDR of 0.5, preserved144

daily activities, and absence of dementia. All AD par-145

ticipants met NINCDS/ADRDA Alzheimer’s Criteria146

and a CDR of 0.5 or 1.0.147

To address our research questions, we used148

two separate datasets from the ADNI database:149

CSF biomarkers and plasma biomarkers (Table 1).150

Although the datasets do not overlap completely,151

within the plasma-CSF datasets there is an overlap152

of 85% (i.e., 85% of individuals with CSF biomarker153

data also had plasma levels of biomarkers). This154

is an exploratory study of these variables on sex155

by APOE genotype and sex by diagnosis and we156

discuss the limitation of these overlapping datasets157

below.158

Statistical methods: Inflammatory markers159

We included all ADNI participants that had inflam-160

matory markers measured in CSF (N = 279) and161

plasma (N = 527) listed in Table 1. Data included in162

our analyses were: demographics (age, years of edu-163

cation, and ethnicity), baseline diagnosis (cognitively164

normal, CN; late MCI, LMCI; or AD), and number165

of APOE �4 alleles. We collapsed APOE genotype166

into two groups: 1) participants carrying any �4 alle-167

les (homozygous �4/�4 and heterozygous �4/–) and168

2) participants with no �4 risk alleles (–/–). Plasma169

and CSF samples from the ADNI study were col-170

lected in CN, LMCI, and AD participants at baseline171

in the morning after an overnight fast. Processing,172

aliquoting, and storage were performed according173

to the ADNI Biomarker Core Laboratory Standard174

Operating Procedures. Inflammatory markers were175

measured using a commercially available multiplex176

proteomic panel (Human Discovery Multi-Analyte177

Profile; Luminex xMAP) developed by Rules-Based178

Medicine (Austin, TX), that measures a variety of179

markers including cytokines, metabolic markers, and 180

growth factors. We initially chose biomarkers avail- 181

able in plasma involved in inflammation and immune 182

responses (cytokines, immunoglobulins, CRP, and 183

ICAM1) and stress (cortisol; Table 2). We analyzed 184

the same biomarkers in CSF (however, IgE and IL- 185

18 are not available in CSF). The protocols used to 186

quantify plasma and CSF analytes are described in 187

Craig-Schapiro et al. [40] and Hu et al. [41]. We used 188

the ADNI quality-controlled data for plasma and CSF 189

provided by the ADNI Consortium. For plasma IL- 190

16, we removed one outlier that was more than two 191

times lower than the 25th percentile in the plasma 192

data. Sensitivity analysis with the outlier present sug- 193

gested that it was disproportionately influencing the 194

results. 195

We compared all available data for each study 196

variable between the sexes using the Wilcoxon rank 197

sum test for continuous variables and Fisher’s exact 198

test for categorical variables. Nonparametric tests are 199

standard for comparing variables where the distri- 200

bution is unknown or expected to be non-normal. 201

We used general linear models to determine the 202

relationships between 1) sex and APOE genotype 203

(non-carriers or carriers of APOE �4 alleles) or 2) 204

sex and baseline diagnosis as predictor variables, 205

and biomarkers as dependent variables. Due to the 206

limited sample size, we were not able to study 207

sex, APOE genotype, and baseline diagnosis in one 208

model. All models included age and education as 209

covariates. Initially, all models included an interac- 210

tion between sex and presence of APOE �4 alleles or 211

sex and baseline diagnosis; if this interaction was not 212

significant, it was removed from the model to esti- 213

mate the main effects of sex and APOE genotype 214

or diagnosis. Significance was based on the like- 215

lihood ratio test, and all p-values for comparisons 216

of sex and either APOE genotype or diagnosis for 217

all outcomes combined were corrected for multiple 218

testing using the Benjamini-Hochberg false discov- 219

ery rate method with the family-wise error rate set 220

to 0.05 [42]. In total, three p-values per dependent 221

variable were included in each set of models (inter- 222

action term and main effects of sex and APOE or 223

diagnosis) resulting in 27 p-values corrected in CSF 224

(9 dependent variables) and 33 p-values corrected 225

in plasma (11 dependent variables; Supplementary 226

Tables 1–4) for each of the two models (sex and 227

APOE and sex and diagnosis). Significant interaction 228

terms were followed up using pairwise simple-effects 229

tests with Benjamini-Hochberg p-value correction. 230

A subset of participants with CSF measurements 231

https://www.adni-info.org
https://adni.loni.usc.edu/methods/documents/


Uncorrected Author Proof

4
P.D

uarte-G
uterm

an
etal./Inflam

m
ation

in
A

D
Table 1

Demographic and clinical information for all ADNI participants subdivided by sex. Participants with measured biomarkers in (A) cerebrospinal fluid (CSF) and (B) plasma. We collapsed APOE
genotype into two groups: (1) participants carrying any �4 alleles (homozygous �4/�4 and heterozygous �4/–) and (2) participants with no �4 risk alleles (–/–). In the two subdata sets, females
were significantly younger and had fewer years of education than males. In data set A (but not B), there was a trend for the proportion of female and male participants in each of the diagnosis
to be different (p = 0.051) with more females (27.5% compared to 21.8%) diagnosed with AD, more females cognitively normal (32.1% compared to 22.9%), and fewer females diagnosed with
LMCI compared to males (40.4% compared to 55.3%). The proportion of female and male participants carriers and non-carriers of APOE �4 alleles was not significantly different in any of the
two datasets analysed. 85% of individuals with CSF biomarkers (A) had also plasma biomarkers (B). CN, cognitively normal; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease

A. CSF B. Plasma

Sex Sex

Total Female Male P Total Female Male P
No. 279 No. 109 No. 170 No. 527 No. 196 No. 330

Age
Mean (SD) 75.15 (±6.86) 73.75 (±6.69) 76.04 (±6.83) 0.007 74.75 (±7.40) 73.79 (±7.63) 75.32 (±7.21) 0.051

Education (y)
Mean (SD) 15.69 (±2.95) 14.68 (±2.74) 16.34 (±2.90) <0.0001 15.57 (±3.04) 14.94 (±2.89) 15.95 (±3.07) <0.0001

Ethnicity
White 267 (95.70%) 103 (94.50%) 164 (96.47%) 0.55 498 (94.68%) 186 (94.90%) 312 (94.55%) 0.27
Not Whitel 12 (4.30%) 6 (5.50%) 6 (3.53%) 28 (5.32%) 10 (5.10%) 18 (5.45%)

Baseline diagnosis
CN 74 (26.5%) 35 (32.1%) 39 (22.9%) 0.051 40 (7.6%) 19 (9.7%) 21 (6.4%) 0.16
LMCI 138 (49.5%) 44 (40.4%) 94 (55.3%) 378 (71.9%) 132 (67.3%) 246 (74.5%)
AD 67 (24.0%) 30 (27.5%) 37 (21.8%) 108 (20.5%) 45 (23.0%) 63 (19.1%)

APOE �4 allele number
0 134 (48.03%) 51 (46.79%) 83 (48.82%) 0.81 243 (46.20%) 90 (45.92%) 153 (46.36%) 0.93
1 or 2 145 (51.97%) 58 (53.21%) 87 (51.18%) 283 (53.80%) 106 (54.08%) 177 (53.64%)

Cortisol (ng/mL)
Mean (SD) 16.05 (±6.04) 14.92 (±6.01) 16.78 (±5.96) 0.008 2.17 (±0.13) 2.16 (±0.13) 2.17 (±0.13) 0.16

C reactive protein (ug/mL)
Mean (SD) –2.83 (±0.56) –2.77 (±0.64) –2.87 (±0.51) 0.23 0.12 (±0.54) 0.21 (±0.55) 0.07 (±0.52) 0.003

CD40 antigen (ng/mL)
Mean (SD) –0.65 (±0.12) –0.66 (±0.10) –0.64 (±0.14) 0.12 –0.12 (±0.13) –0.12 (±0.13) –0.12 (±0.14) 0.87

Interleukin 16 (pg/mL)
Mean (SD) 0.91 (±0.18) 0.87 (±0.17) 0.94 (±0.19) 0.004 2.55 (±0.15) 2.54 (±0.15) 2.55 (±0.16) 0.34

Interleukin 3 (ng/mL)
Mean (SD) –2.22 (±0.32) –2.28 (±0.29) –2.17 (±0.34) 0.001 –1.65 (±0.29) –1.65 (±0.29) –1.65 (±0.30) 0.97

Interleukin 6 receptor (ng/mL)
Mean (SD) –0.01 (±0.15) –0.02 (±0.14) –0.00 (±0.15) 0.30 1.46 (±0.14) 1.48 (±0.14) .45 (±0.13) 0.02

Interleukin 8 (pg/mL)
Mean (SD) 1.68 (±0.15) 1.64 (±0.11) 1.70 (±0.16) 0.001 1.02 (±0.19) 1.02 (±0.21) 1.01 (±0.18) 0.1

Intercellular adhesion molecule 1 (ng/mL)
Mean (SD) 0.96 (±0.44) 0.83 (±0.33) 1.04 (±0.48) 0.0001 2.01 (±0.15) 2.04 (±0.14) 2.00 (±0.15) 0.03

Immunoglobulin A (mg/mL)
Mean (SD) –2.54 (±0.31) –2.68 (±0.26) –2.45 (±0.31) <0.0001 0.61 (±0.23) 0.60 (±0.23) 0.62 (±0.22) 0.21

p-values are from Wilcoxon rank sum tests for continuous variables and Fisher’s exact tests for categorical variables. łIncludes self-reported Black, Asian, American Indian/Alaskan, and >1
ethnicity.
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Table 2
List of biomarkers analysed in the current study with their main biological function and main finding in the CSF and plasma. Main effects
of sex (sex difference), APOE �4 genotype (non-carriers or carriers), and diagnosis (CN, cognitively normal; LMCI, late mild cognitive
impairment; AD, Alzheimer’s disease) and interaction between sex and APOE �4 genotype (sex * APOE �4 genotype) are shown. Significant

effects are adjusted p ≤ 0.05 and trends are adjusted p≤0.08. See results for details. n/a, not available

Biomarker Biological function Results in CSF Results in Plasma

Cortisol Stress hormone and inflammation Sex difference (trend): ♀ < ♂ Diagnosis: LMCI < AD
Intercellular

adhesion
molecule 1

Immune response, immunoglobulin
family

Sex difference: ♀ < ♂ Sex difference: ♀ > ♂

C-reactive protein Inflammation APOE �4 genotype:
non-carriers > carriers

Sex difference: ♀ > ♂
APOE �4 genotype:

non-carriers > carriers
Diagnosis (trend): CN > LMCI and

CN > AD
Diagnosis (trend): LMCI < AD

CD40 antigen Immune and inflammatory
responses

Interleukin 3 Immune and inflammatory
responses

Interleukin 6
receptor

Immune and inflammatory
responses

APOE �4 genotype (trend):
non-carriers < carriers

Interleukin 8 Immune and inflammatory
responses

Sex * APOE �4 genotype:
non-carriers ♀ < ♂carriers ♀ = ♂

Interleukin 16 Immune and inflammatory
responses

Sex * APOE �4 genotype:
non-carriers ♀ < ♂carriers ♀ = ♂ Diagnosis (trend): CN > LMCI

CN > AD
Immunoglobulin A Immune and inflammatory

responses
Sex difference: ♀ < ♂

Interleukin 18 Immune and inflammatory
responses

n/a Sex difference: ♀ < ♂
Immunoglobulin E Immune and inflammatory

responses
n/a Sex difference: ♀ < ♂

had corresponding plasma measurements (N = 237232

total, N = 88 females and N = 149 males). For each233

biomarker, we calculated Pearson’s correlation coef-234

ficients between CSF and plasma levels in males and235

females separately. We then compared these correla-236

tions using the Fisher r-to-Z transformation and Z-test237

using the method by Zou [43]. We report significance238

differences (adjusted p ≤ 0.05) and trends (adjusted239

p ≤ 0.08). All regression analyses were carried out in240

R v3.5.1 [44].241

RESULTS242

Demographic information243

Table 1 gives a summary of the variables for244

the participants with: CSF biomarkers (Table 1A;245

N = 279), plasma biomarkers (Table 1B; N = 527).246

Given the differences in sample sizes, we performed247

demographic analyses on the two datasets. Females248

were younger than males in the CSF (p < 0.01) and249

plasma data set (p = 0.051). In the two datasets,250

females had fewer years of education than males251

(ps < 0.0001). Thus, we used age and education level 252

as covariates in the analyses. Although there were no 253

sex differences in distribution of APOE �4 alleles in 254

any of the two datasets (all ps > 0.4), the proportion 255

of participants in each of the diagnosis categories was 256

marginally different for females and males in the CSF 257

dataset (p = 0.051; Table 1A) but not in the plasma 258

dataset (p > 0.1; Table 1B). 259

Sex and presence of APOE �4 alleles were 260

associated with changes in inflammatory markers 261

Our first aim was to investigate whether sex and 262

APOE genotype interact to influence inflammation 263

using biomarkers, which we analyzed separately in 264

CSF and plasma (Supplementary Tables 1 and 3, 265

respectively). Caution should be noted as inflam- 266

matory signaling can differ depending on tissue 267

examined [45, 46]. 268

For inflammatory markers measured in CSF, only 269

IL-16 and IL-8 elicited a significant interaction 270

between sex and APOE genotype (p = 0.016 and 271

p = 0.035, respectively; Table 3). CSF IL-16 and 272
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IL-8 levels were significantly lower in females non- 273

carriers of APOE �4 alleles compared to males (both 274

ps < 0.001), whereas levels were similar between 275

the sexes in carriers of APOE �4 alleles (ps > 0.9; 276

Fig. 1A, B). Furthermore, in females with APOE �4 277

alleles, IL-16 was significantly higher than in non- 278

APOE �4 female carriers (p = 0.050), while a trend 279

was observed in males (p = 0.062). Whereas for IL- 280

8, males with APOE �4 alleles had lower levels of 281

IL-8 compared to males with no APOE �4 alleles 282

(p = 0.014) but there was no difference in females 283

(p > 0.3). Regardless of sex, CSF CRP levels were 284

lower in carriers of APOE �4 alleles compared to non- 285

carriers (main effect of genotype: p = 0.009; Table 3; 286

Fig. 1C). There was a trend for an increase in IL- 287

6 receptor levels in APOE �4 carriers regardless of 288

sex compared to non APOE �4 carriers (main effect 289

of genotype: p = 0.071; Table 3). Lastly females had 290

significantly lower CSF levels of IgA and ICAM1 291

and a trend for lower CSF cortisol levels compared 292

to males (main effect of sex: p < 0.001; p = 0.009, and 293

p = 0.070, respectively; Table 3). There were no other 294

significant main or interaction effects on any other 295

CSF biomarkers. 296

For biomarkers measured in plasma, there were no 297

significant interactions between sex and APOE geno- 298

type (Supplementary Table 3). However, females 299

had higher plasma CRP levels (main effect of sex: 300

p = 0.048; Fig. 1D) and ICAM1 (trend for a main 301

effect of sex: p = 0.051) compared to males and sig- 302

nificantly lower levels of IL-18 (main effect of sex: 303

p = 0.001; Fig. 1E) and immunoglobulin E (IgE: main 304

effect of sex: p < 0.001; Fig. 1F) compared to males. 305

Furthermore, plasma CRP decreased in carriers of 306

APOE �4 alleles compared to non-carriers (main 307

effect of genotype: p < 0.001; Fig 1 D). 308

Sex and baseline diagnosis were associated with 309

changes in inflammatory markers 310

We next tested whether sex and baseline diagno- 311

sis status (CN, LMCI, and AD) influenced CSF and 312

plasma biomarkers of inflammation (Supplementary 313

Tables 2 and 4, respectively). There were no signif- 314

icant interactions between sex and diagnosis for any 315

of the tested variables in CSF (Table 4 and Supple- 316

mentary Table 2) or plasma (Supplementary Table 4). 317

For CSF levels, females had significantly lower lev- 318

els of IgA (main effect of sex: p < 0.001) and ICAM1 319

(main effect of sex: p = 0.026) and a trend for lower 320

IL-16 levels (main effect of sex: p = 0.055) compared 321

to males (Table 4; Fig. 2A–C), but we did not observe 322
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Fig. 1. Marginal mean (±95% confidence interval) of CSF levels of A) IL-16 (pg/ml), B) IL-8 (pg/ml), C) C-reactive protein (CRP; �g/ml),
and plasma levels of D) CRP (CRP; �g/ml), E) IL-18 (pg/ml), and F) IgE (ng/ml) in ADNI participants by sex and presence or absence of
APOE �4 alleles (none or 1 and 2 alleles).

Table 4
Linear regression results for models with sex and baseline diagnosis (CN, cognitively normal; LMCI, late mild cognitive impairment; AD,
Alzheimer’s disease). Only shown are the models with significant associations (adjusted p ≤ 0.05) and trends (adjusted p ≤ 0.08). p-values are
for overall tests and are FDR-adjusted. All model summaries are available in Supplementary Table 2.There were no significant interactions

between diagnosis and sex

Predictors Interleukin 16 pg/ml Immunoglobulin A mg/ml Intercellular Adhesion
Molecule ng/ml

Estimates P Adjusted Estimates P Adjusted Estimates P Adjusted
(CI) p (CI) p (CI) p

(Intercept) 0.51 (0.26–0.77) –2.92 (–3.35– –2.48) –0.19 (–0.80–0.42)
Age (y) 0.01 (0.00–0.01) 0.00 (–0.00–0.01) 0.01 (0.01–0.02)
Education (y) –0.01 (–0.01–0.00) 0.00 (–0.01–0.01) –0.00 (–0.02–0.02)
Male (ref = Female) 0.06 (0.02–0.11) 0.007 0.055 0.21 (0.14–0.29) <0.001 <0.001 0.17 (0.06–0.28) 0.002 0.026
Diagnosis (ref = CN) 0.4 0.61 0.99 0.99 0.54 0.67
LMCI 0.01 (–0.05–0.06) 0.00 (–0.08–0.09) 0.06 (–0.06–0.18)
AD –0.03 (–0.09–0.03) –0.01 (–0.11–0.09) 0.02 (–0.12–0.16)
Observations 279 279 279
R2/ adjusted R2 0.099/0.082 0.124/0.107 0.101/0.085

any significant main effects of diagnosis for any CSF323

variable.324

In plasma, we found that females had lower lev-325

els of IgE (main effect of sex: p < 0.001) and IL-18326

compared to males (main effect of sex: p = 0.004) and 327

trends for females to have higher levels of ICAM1 328

(main effect of sex: p = 0.056) and CRP (main effect 329

of sex: p = 0.056; Fig. 2D) compared to males. In 330
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Fig. 2. Marginal mean (±95% confidence interval) of CSF levels of A) IL-16 (pg/ml), B) IgA (mg/ml), C) Intercellular adhesion molecule
(ICAM1; ng/ml), and plasma levels of D) C-reactive protein (CRP; �g/ml), E) cortisol (ng/ml), and F) IL-16 in ADNI participants by sex
and diagnosis (CN, cognitively normal; LMCI, late mild cognitive impairment; and AD, Alzheimer’s disease).

addition, we found diagnosis significantly influenced331

plasma cortisol (main effect of baseline diagnosis:332

p = 0.01) with lower levels in LMCI compared to AD333

(p < 0.001; Fig. 2E). We found trends for diagnosis to334

influence plasma IL-16, CRP, and CD 40 levels (main335

effect of diagnosis: p = 0.054, p = 0.056; p = 0.067).336

Plasma IL-16 (ps = 0.006) and CRP (p = 0.006 and337

p = 0.02) levels were lower in LMCI and AD com-338

pared to CN (Fig. 2D, F). For plasma CD 40, levels339

were lower in LMCI compared to AD (p = 0.01;340

Supplementary Table 4). In summary, although we341

detected associations between sex and diagnosis and342

various biomarkers, we did not find evidence of343

a sex and diagnosis interaction on any variables344

examined.345

Correlations between cerebrospinal and plasma346

levels of biomarkers were mostly positive347

The results for inflammatory markers in plasma348

did not always match results in CSF (Supplemen-349

tary Tables 2 and 4). We therefore investigated the350

relationship between plasma and CSF biomarkers351

in males and females (Table 5, Fig. 3). Per- 352

haps surprisingly, we found the majority of 353

biomarkers were significantly positively correlated 354

between plasma and CSF levels in both males 355

and females. These significant positive correlations 356

included CRP (males, r = 0.793; females r = 0.860; 357

ps<0.0001), IL-6 receptor (males, r = 0.459; females 358

r = 0.493, ps < 0.0001), IgA (males, r = 0.705; 359

females r = 0.529; ps < 0.0001), and cortisol in both 360

sexes (males, r = 0.176; females, r = 0.327; p = 0.032 361

and 0.002, respectively). IL-16 was significantly cor- 362

related in females (r = 0.290, p = 0.006) but only a 363

trend in males (r = 0.156, p = 0.058). Plasma and CSF 364

levels of ICAM1 and CD 40 were positively corre- 365

lated in males only (r = 0.231, p = 0.005 and r = 0.374, 366

p < 0.0001, respectively) whereas plasma and CSF 367

IL-3 levels were negatively correlated in females only 368

(r =–0.246, p = 0.021; Fig. 3). There were significant 369

sex differences, favoring males, in the strength of cor- 370

relation between the sexes for CD 40 (p = 0.01) and 371

IgA (p = 0.03), with trends for sex differences, favor- 372

ing males in ICAM1 (p = 0.06) and favoring females 373

in IL-3 (p = 0.06). 374
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Table 5
Pearson’s correlations between plasma and CSF levels of the biomarkers analysed in the current study separetly in males and females.
Differences in the correlations were determined using confidence intervals. Significant correlations and differences between correlations are

p ≤ 0.05 and trends are p ≤ 0.08

Correlation (r) in P Correlation (r) in P Difference (95% CI) P
Males n = 149 Females n = 88

Cortisol 0.176 0.032 0.327 0.002 –0.151 (–0.388–0.101) 0.24
C reactive protein 0.793 <0.0001 0.860 <0.0001 –0.067 (–0.149–0.019) 0.12
CD40 antigen 0.374 <0.0001 0.016 0.88 0.358 (0.103–0.606) 0.01
IL-16 0.156 0.058 0.290 0.006 –0.134 (–0.376–0.121) 0.30
IL-3 0.001 0.989 –0.246 0.021 0.247 (–0.016–0.493) 0.06
IL-6 receptor 0.459 <0.0001 0.493 <0.0001 –0.034 (–0.232–0.179) 0.75
IL-8 0.138 0.093 0.287 0.007 –0.149 (–0.392–0.107) 0.25
IgA 0.705 <0.0001 0.529 <0.0001 0.176 (0.012–0.361) 0.03
ICAM1 0.231 0.005 –0.021 0.849 0.252 (–0.011–0.507) 0.06
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Fig. 3. Correlations between plasma and CSF levels of A) CD 40, B) ICAM1, C) IL-3, and D) IgA in males and females separately. CD 40
and ICAM1 were positively correlated in males while IL-3 was negatively correlated in females. IgA was more strongly correlated in males
compared to females (see Table 5 for details).

DISCUSSION375

In the present study using ADNI data from CN,376

LMCI, and AD participants we found interactions377

between sex and APOE genotype (but not between378

sex and diagnosis) on CSF and plasma levels of379

IL-8 and IL-16 (see Table 2 for summary of the380

results). CSF levels of IL-8 and IL-16 were on aver-381

age lower in female APOE �4 non-carriers compared382

to males but similar levels were found between the 383

sexes in APOE �4 allele carriers. Regardless of sex, 384

the APOE �4 allele was associated with decreased 385

levels of CSF and plasma CRP. Sex differences 386

were seen in inflammatory markers, regardless of 387

diagnosis or genotype, as females had lower CSF 388

cytokines (IL-16, IL-18), CSF ICAM1, CSF and 389

plasma immunoglobulins (IgA, IgE), and plasma 390

IL-18. However, tissue (CSF, plasma) mattered for 391
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results for certain inflammatory markers (ICAM1 and392

to a lesser extent CRP) as females had higher plasma393

CRP and ICAM1 compared to males, opposite to394

what was found in CSF. Despite these differences in395

outcomes between plasma and CSF biomarker analy-396

ses, plasma and CSF levels were positively correlated397

for cortisol, CRP, IL-6 receptor, IgA in both sexes,398

whereas IL-16, and IL-8 were correlated in females399

and CD 40 and ICAM1 were correlated in males, indi-400

cating good consistency between CSF and plasma401

levels of these biomarkers. Intriguingly, IL-3 stood402

out from all these biomarkers with a negative cor-403

relation between CSF and plasma levels in females404

only. Males exhibited significantly stronger correla-405

tions between plasma and CSF levels for CD 40 and406

IgA compared to females. Sex and APOE genotype407

differences in CSF and plasma inflammatory mark-408

ers suggest differences in underlying physiology that409

may affect aging and the progression of AD and this410

should be considered in future studies. Researchers411

should be cautioned to use sex as a biological variable412

in all analyses.413

Sex interacted with presence of APOE �4 alleles414

to affect levels of IL-8 and IL-16415

In this study, we found that sex interacted with416

APOE genotype to influence CSF IL-16 and IL-8.417

CSF IL-16 and IL-8 levels were lower in females418

with no APOE �4 alleles compared to males, but no419

sex differences in these cytokine levels were detected420

in participants carrying APOE �4 alleles. Our results421

suggest that presence of APOE �4 alleles can mod-422

ulate CSF (and potentially plasma) cytokine levels423

in a sex-dependent way. The APOE protein can reg-424

ulate transcription in vitro [47] and APOE4, but not425

APOE3, increases levels of IL-6 and IL-8 in vitro [48].426

In the current study, we found that the sex differences427

in IL-16 and IL-8 levels disappeared in carriers of428

APOE �4 alleles. One possibility is that the APOE4429

protein regulates cytokine levels differently in males430

and females. IL-16 has been implicated in AD [49]431

and plasma IL-16 levels decreased with diagnosis (in432

males and females; current study) and AD severity433

(analysis without regard to sex; [50]). On the other434

hand, levels of IL-8 were not affected by diagnosis,435

consistent with a meta-analysis of cytokines in AD436

[22]. It is unclear what the impact of regulation of437

CSF cytokine levels by sex and APOE �4 has on AD438

symptoms or pathology, however given that females439

with APOE �4 alleles are disproportionally affected440

by AD during certain ages [16, 18], IL-16 and IL-8441

levels are unlikely to be a mechanism for this effect 442

as differences in sex by genotype were noticed in the 443

absence not presence of APOE �4 alleles. 444

Females had higher CRP levels compared to 445

males and CRP levels were lower in APOE �4 446

carriers 447

We found that plasma and CSF levels of CRP, a 448

widely used inflammatory and cardiovascular marker 449

[51, 52], were independently affected by sex and 450

APOE genotype. Females, regardless of diagnosis 451

or APOE �4 alleles, had significantly higher plasma 452

CRP relative to males, consistent with findings in 453

healthy individuals [53]. Higher levels of peripheral 454

CRP may suggest higher systemic inflammation in 455

females, which is associated with an increased risk 456

in all-cause dementia [54]. Higher levels of serum 457

CRP are also associated with higher levels of serum 458

estradiol in postmenopausal healthy females [55] 459

which suggests that sex differences in CRP levels 460

may be partly due to sex differences in estradiol lev- 461

els or other sex hormones. A recent study using the 462

ADNI database found that low testosterone levels 463

was associated with higher tau pathology especially 464

among APOE �4 carriers, regardless of sex, suggest- 465

ing that testosterone maybe neuroprotective in both 466

sexes [56]. In addition, we found that the presence 467

of APOE �4 alleles decreased plasma and CSF CRP 468

levels consistent with previous research in large pop- 469

ulation studies [57, 58]. In our study, we also found 470

a trend for lower levels of plasma CRP with LMCI 471

and AD compared to CN. Recent meta-analyses did 472

not find differences in peripheral levels of CRP in 473

AD compared to healthy controls [59, 60]. How- 474

ever, in participants with mild and moderate dementia 475

only, serum CRP levels were lower compared to the 476

cognitively healthy group [59]. In healthy individ- 477

uals, higher levels of plasma CRP in midlife are 478

associated with a higher amyloid burden later in 479

life in males but not females [27]. However, despite 480

this finding, higher systemic inflammation in midlife 481

(including CRP) is associated with greater cognitive 482

decline later in life in both sexes in healthy individu- 483

als [28]. It is important to acknowledge evidence that 484

midlife obesity, but not later life obesity, is associated 485

with an increased risk to develop dementia [61, 62], 486

which may be related to altered inflammation (e.g., 487

cytokines and CRP) due to the accumulation of adi- 488

pose tissue [63, 64]. It is possible that sex differences 489

in inflammation and/or obesity earlier in life have 490

long-term effects on the transition to MCI and/or AD. 491
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Females had lower cytokine and immunoglobulin492

levels compared to males493

We found some biomarkers that were affected494

by sex, but not diagnosis or presence of APOE �4495

alleles. For example, females had lower CSF levels496

of ICAM1 compared to males, regardless of APOE497

genotype or diagnosis, but, although a trend, the498

opposite effect was seen in plasma. In contrast, in499

healthy adults (18-55 years old), serum levels of500

ICAM1 are lower in females compared to males501

[65]. ICAM1 is a type of adhesion molecule asso-502

ciated with microvascular endothelial activation [66]503

and plasma ICAM1 levels (but not CSF levels; [67])504

were higher in patients with AD [67–69]. Although505

in the present study we did not observe a signif-506

icant effect of plasma ICAM1 with diagnosis, the507

unadjusted p-value was 0.063 with higher levels in508

LMCI and AD groups. It is intriguing that females509

have lower CSF levels of cytokines (IL-16, IL-18),510

ICAM1, and immunoglobulins (IgE and IgA) but511

higher plasma CRP and ICAM1 levels. Although512

neuroinflammation is associated with AD, it may be513

both a product and a driver of neurodegeneration,514

and it may have both beneficial and detrimental roles515

in AD [70, 71]. In AD mouse models, inflamma-516

tory cytokines (e.g., IL1�, IL-4, IL-6, IL-10, IFN�,517

TNF�) can both increase amyloid-� deposition and518

reduce amyloid plaque pathology [72–80]. In trans-519

genic mice, amyloid deposition is associated with low520

T-cell activation suggesting that the immune system is521

hypo-responsive to amyloid-� [81]. Thus, increases522

of inflammatory markers may not always be indica-523

tive of worse neuropathology or outcomes, but may524

be contributing to reductions in AD neuropathology.525

It is also possible that males and females have vary-526

ing levels of beneficial versus detrimental immune527

responses which can differentially affect how the528

disease progresses between the sexes. Indeed, we529

found sex differences in the correlation between530

CSF and plasma biomarkers (CD 40, IgA, ICAM1,531

and IL-3), which suggests that plasma and CSF532

levels may be regulated differently in males and533

females.534

Limitations535

In this exploratory study, we used two sepa-536

rate ADNI datasets (CSF biomarkers and plasma537

biomarkers) with a large overlap of individuals (85%)538

but different sample sizes that resulted in differ-539

ences in the demographics between the datasets and540

power across the datasets for the analyses conducted. 541

Because of this, the proportion of APOE or diagno- 542

sis by sex could differ across these datasets. While 543

the proportion of sex by APOE �4 carriers did not 544

differ substantially between the datasets, the propor- 545

tion of participants in each of the diagnosis groups 546

was not similar across datasets causing differences 547

in statistical power to detect the interaction term of 548

diagnosis and sex. In addition, in this cohort the pro- 549

portion of participants in the different APOE �4 allele 550

groups was correlated with diagnosis (Supplementary 551

Table 5). Thus, a larger cohort is required to test how 552

sex, APOE genotype, and diagnosis interact together 553

in one model. 554

More generally, the ADNI cohort is not ethni- 555

cally or socioeconomically diverse, being mostly 556

composed of self-reported white (only 12 individu- 557

als were not-white) and highly educated individuals 558

(average 15.69 years of education). As AD inci- 559

dence, prevalence, and age of onset varies by ethnicity 560

[82–84] and education [85], our conclusions may 561

not apply to more ethnically and socially diverse 562

populations. In addition to sex, it is possible the 563

underlying mechanisms of AD are different depend- 564

ing on ethnicity. Additionally, other pathologies 565

in these participants, such as cancer, cardiovascu- 566

lar disease, smoking status, or obesity may have 567

influenced inflammatory markers and limited our 568

interpretations. 569

Conclusion 570

The current study provides evidence that sex and 571

presence of APOE �4 alleles are associated with CSF 572

levels of the inflammatory markers IL-16 and IL- 573

8. We found sex differences indicating that females 574

had lower cytokine and immunoglobulin levels but 575

higher plasma CRP and ICAM1 levels compared to 576

males, although the direction of the ICAM1 finding 577

was tissue-dependent. Together, our work suggests 578

that that presence of APOE �4 alleles can affect 579

cytokine levels differently in males and females and 580

the underlying pathophysiology of aging and AD may 581

be tissue- and sex-specific. 582
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